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Abstract: Cardiovascular diseases (CVDs) kill about 20.5 million people every year. Early prediction
can help people to change their lifestyles and to ensure proper medical treatment if necessary. In this
research, ten machine learning (ML) classifiers from different categories, such as Bayes, functions,
lazy, meta, rules, and trees, were trained for efficient heart disease risk prediction using the full set of
attributes of the Cleveland heart dataset and the optimal attribute sets obtained from three attribute
evaluators. The performance of the algorithms was appraised using a 10-fold cross-validation testing
option. Finally, we performed tuning of the hyperparameter number of nearest neighbors, namely,
‘k’ in the instance-based (IBk) classifier. The sequential minimal optimization (SMO) achieved an
accuracy of 85.148% using the full set of attributes and 86.468% was the highest accuracy value using
the optimal attribute set obtained from the chi-squared attribute evaluator. Meanwhile, the meta
classifier bagging with logistic regression (LR) provided the highest ROC area of 0.91 using both
the full and optimal attribute sets obtained from the ReliefF attribute evaluator. Overall, the SMO
classifier stood as the best prediction method compared to other techniques, and IBk achieved an
8.25% accuracy improvement by tuning the hyperparameter ‘k’ to 9 with the chi-squared attribute
set.

Keywords: heart disease; data pre-processing; attribute evaluation; machine learning classifiers;
hyperparameter tuning

1. Introduction

Cardiovascular disease (CVD) is the biggest concern in the medical sector at present.
It is one of the most lethal and chronic diseases, leading to the highest number of deaths
worldwide. From the recent statistics reported by World Health Organization (WHO), about
20.5 million people die every year due to cardiovascular disease, which is approximately
31.5% of all deaths globally. It is also estimated that the number of annual deaths will
rise to 24.2 million by 2030. About 85% of cardiovascular disease deaths are due to heart
attack and strokes [1]. A heart attack is mainly caused when the blood flow to the heart is
blocked due to the build-up of plaque in the arteries. Stroke is caused by a blood clot in an
artery within the brain, which cuts off blood circulation to the brain [2]. Heart disease is
triggered mostly when the heart is unable to provide enough blood supply to parts of the
body [3,4]. It results in early symptoms, such as an irregular heartbeat, shortness of breath,
chest discomfort, sudden dizziness, nausea, swollen feet, and a cold sweat. The accurate
prediction and proper diagnosis of heart disease in time are indispensable for improving
the survival rate of patients. The risk factors that cause CVD include high BP, cholesterol,
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alcohol intake, and tobacco consumption, as well as obesity, physical inactivity, and genetic
mutations. The early detection of signs and changes in lifestyle, such as physical activity,
avoiding smoking, and appropriate medical examination by clinicians, can help to reduce
mortality [5].

The techniques that are currently used to predict and diagnose heart disease are
primarily based on the analysis of a patient’s medical history, symptoms, and physical
examination reports by doctors. Most of the time, it is difficult for medical experts to accu-
rately predict a patient’s heart disease, where they can predict with up to 67% accuracy [6]
because, currently, the diagnosis of any disease is done concerning the similar symptoms
observed from previously diagnosed patients [7]. Hence, the medical field requires an
automated intelligent system for the accurate prediction of heart disease. This can be
achieved by utilizing the huge amount of patient data that is available in the medical sector,
along with machine learning algorithms [8]. In recent times, data science research groups
have paid much attention to disease prediction. This is owing to the rapid development
of advanced computer technologies in the healthcare sector, as well as the availability
of massive health databases [9]. The combination of new deep-learning and intelligent
decision-making systems has great potential to improve healthcare assistance in our soci-
ety [10]. Data is the most valuable resource for obtaining new or additional knowledge
and collecting important information. There is an enormous amount of data (big data) in
various sectors, such as science, technology, agriculture, business, education, and health.
This is completely unprocessed data, either in a structured or unstructured form [11]. It is
necessary to extract valuable information from big data to store, process, analyze, manage,
and visualize this data via performing data analysis [12].

Currently, in the healthcare sector, the information that is related to patients with med-
ical reports is readily available in databases and is growing rapidly day by day. This raw
data is highly redundant and unbalanced. It requires pre-processing to extract important
features, reduce the execution time of training algorithms, and improve the classification
efficiency [13]. The latest advancements in computing capacities and reprogramming
capabilities of machine learning improve these processes and open doors for research
opportunities in the healthcare sector [14], especially regarding the early prediction of
the diseases, such as CVD and cancer, to improve the survival rate. Machine learning
is used in a wide range of applications, from identifying risk factors for disease to de-
signing advanced safety systems for automobiles. Machine learning offers predominant
prediction modeling tools to address the current limitations [15]. It has good potential
for transforming big data for prediction algorithm development. It relies on a computer
to learn complex and non-linear interactions between attributes by minimizing the error
between the predicted and observed outcomes [16]. The machine learns patterns from the
features that are available in the existing dataset and applies them to the unknown dataset
to predict the outcome. One of the powerful machine learning techniques for prediction is
classification. Classification is a supervised machine learning method that is effective at
identifying the disease when trained using appropriate data [17].

The main contribution of this research work was to implement an intuitive medical
prediction system for the diagnosis of heart disease using contemporary machine learning
techniques. In this work, different kinds of machine learning classifier algorithms, such
as naïve Bayes (NB), logistic regression (LR), sequential minimal optimization (SMO),
instance-based classifier (IBk), AdaBoostM1 with decision stump (DS), AdaBoostM1 with
LR, bagging with REPTree, bagging with LR, JRip, and random forest (RF) were trained to
select the best predictive model for the accurate heart disease detection at an initial stage.
Three attribute selection techniques, such as correlation-based feature subset evaluator,
chi-squared attribute evaluator, and ReliefF attribute evaluator, were utilized to obtain
the optimal set of attributes that greatly influenced the performance of the classifiers
when predicting the target class. Finally, tuning the hyperparameter “number of nearest
neighbors” in the IBk classifier was performed on both the full attribute set and optimal
sets obtained from attribute evaluators.
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2. Related Works

This section discusses the state-of-the-art methods for heart disease diagnosis using
machine learning techniques that were accomplished by various effective research works.

R. Perumal et al. [18] developed a heart disease prediction model using the Cleveland
dataset of 303 data instances through feature standardization and feature reduction using
PCA, where they identified and utilized seven principal components to train the ML
classifiers. They concluded that LR and SVM provided almost similar accuracy values
(87% and 85%, respectively) compared to that of k-NN with 69%. C. B. C. Latha et al. [19]
performed a comparative analysis to improve the predictive accuracy of heart disease risk
using ensemble techniques on the Cleveland dataset of 303 observations. They applied
the brute force method to obtain all possible attribute set combinations and trained the
classifiers. They achieved a maximum increase in the accuracy of a weak classifier of 7.26%
based on ensemble algorithm, and produced an accuracy of 85.48% using majority vote with
NB, BN, RF, and MLP classifiers using an attribute set of nine attributes. D. Ananey-Obiri
et al. [20] developed three classification models, namely, LR, DT, and Gaussian naïve Bayes
(GNB), for heart disease prediction based on the Cleveland dataset. Feature reduction was
performed using single value decomposition, which reduced the features from 13 to 4.
They concluded that both LR and GNB had predictive scores of 82.75% and AUC of 0.87. It
was suggested that other models, such as SVM, k-NN, and random forest, be included.

N. K. Kumar et al. [21] trained five machine learning classifiers, namely, LR, SVM,
DT, RF, and KNN, using a UCI dataset with 303 records and 10 attributes to predict
cardiovascular disease. The RF classifier achieved the highest accuracy of 85.71% with
an ROC AUC of 0.8675 compared to the other classifiers. A. Gupta et al. [22] replaced
the missing values based on the majority label and derived 28 features using the Pearson
correlation coefficient from the Cleveland dataset and trained LR, KNN, SVM, DT, and RF
classifiers using the factor analysis of mixed data (FAMD) method; the results based on a
weight matrix RF achieved the best accuracy of 93.44%. M. Sultana et al. [23] explored KStar,
J48, sequential minimal optimization (SMO), BN, and MLP classifiers using Weka on a
standard heart disease dataset from the UCA repository with 270 records and 13 attributes;
they achieved the highest accuracy of 84.07% with SMO.

S. Mohan et al. [24] developed an effective hybrid random forest with a linear model
(HRFLM) to enhance the accuracy of heart disease prediction using the Cleveland dataset
with 297 records and 13 features. They concluded that the RF and LM methods provided
the best error rates. S. Kodati et al. [25] developed a heart disease prediction system (HDPS)
with the Cleveland dataset of 297 instances and 13 attributes using Orange and Weka data
mining tools, where they evaluated the precision and recall metrics for the naïve Bayes,
SMO, RF, and KNN classifiers. A. Ed-daoudy et al. [26] researched the Cleveland dataset of
303 records and 14 attributes from UCI. They evaluated the performance of the four main
classifiers, namely, SVM, DT, RF, and LR, using Apache Spark with its machine learning
library MLlib.

I. Tougui et al. [27] compared the performances of LR, SVM, KNN, ANN, NB, and
RF models to classify heart disease with the Cleveland dataset with 297 observations and
13 features using six data mining tools: Orange, Weka, RapidMiner, Knime, MATLAB, and
Scikit-Learn. V. Pavithra et al. [28] proposed a new hybrid feature selection technique with
the combination of random forest, AdaBoost, and linear correlation (HRFLC) using the
UCI dataset of 280 instances to predict heart disease. Eleven (11) features were selected
using filter, wrapper, and embedded methods; an improvement of 2% was found for the
accuracy of the hybrid model. C. Gazeloglu et al. [29] projected 18 machine learning models
and 3 feature selection techniques (correlation-based FS, chi-square, and fuzzy rough set)
to find the best prediction combination for heart disease diagnosis using the Cleveland
dataset of 303 instances and 13 variables.

N. Louridi et al. [30] proposed a solution to identify the presence/absence of heart
disease by replacing missing values with the mean values during pre-processing. They
trained three machine learning algorithms, namely, NB, SVM (linear and radial basis func-
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tion), and KNN, by splitting the Cleveland dataset of 303 instances and 13 attributes into
50:50, 70:30, 75:25, and 80:20 training and testing ratios. M. Kavitha et al. [31] implemented
a novel hybrid model on the Cleveland heart dataset of 303 instances and 14 features with
a 70:30 ratio for training and testing by applying DT, RF, and hybrid (DT + RF) algorithms.
B. A. Tama et al. [32] designed a stacked architecture to predict heart disease using RF, gra-
dient boosting machine, and extreme gradient boosting with particle swarm optimization
(PSO) feature selection using various heart disease datasets, including the Cleveland with
303 instances and 13 attributes.

From the experimental works, it is understood that data pre-processing and feature se-
lection can substantially enhance the classification accuracy of machine learning algorithms.
During pre-processing, most researchers [18,19,21,22,26,29–32] replaced the missing values,
either by using the mean value or the majority mark of that attribute, to make sure the
dataset was comprehensive. In some works [20,24,25,27], the missing valued instances
were removed. Feature selection is a challenging task due to the large exploration space. It
grows exponentially according to the number of features available in the dataset. To solve
this issue, an effective comprehensive search technique is required during feature selection.
Furthermore, some studies have employed ensemble models, which combine multiple
basic learning algorithms to obtain a better prediction accuracy. However, the performance
of these techniques can further be improved regarding accurately predicting disease.

3. Materials and Methods

This section discusses the proposed methodology, which comprises the dataset de-
scription, data pre-processing, machine learning classifiers, attribute evaluators, and per-
formance metrics.

3.1. Proposed Research Methodology

The experimental workflow of the proposed methodology is shown in Figure 1. As
a first step, we collected the Cleveland heart disease dataset in .csv format from the UCI
machine learning repository. Then, we imported the dataset into the software tool and
explored the attributes, types, value ranges, and other statistical information. The next
step was pre-processing the data, which included tasks such as looking for the missing
values in the dataset and replacing missing values, either with the user constant or mean
value depending on the type of attribute, to make sure the machine learning classifiers
provide better performance. Thereafter, classification was performed with cross-validation
using several machine learning algorithms, such as NB, LR, SMO, IBk, AdaBooostM1 + DS,
AdaBoostM1 + LR, bagging + REPTree, bagging + LR, JRip, and RF using the full set of
attributes. Cross-validation is a resampling method that is used to assess the efficacy of the
machine learning model by partitioning the original dataset into a training set to train the
model and a test set to evaluate it. The observations in a dataset can be randomly split into
k equal-sized groups. We then trained the model using k−1 folds and validated the models
using the remaining kth fold. We repeated this step until all k folds served as a test set and
took the average of the recorded values as the performance metric of the model. This work
considered k = 10, i.e., a 10-fold cross-validation. Further, we applied attribute evaluators,
such as correlation-based feature selection with the BestFirst search method, chi-squared
attribute evaluation with Ranker, and ReliefF attribute evaluation with Ranker using a
full training set to obtain the optimal set of attributes for predicting heart disease risk and
trained the classifiers again using cross-validation. Finally, we tuned the hyperparameter
‘k’ in the IBk classifier for enhanced performance and analyzed the results.
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3.2. Dataset Description and Statistics

The Cleveland heart dataset consists of 303 instances with 76 attributes, but only
14 attributes are considered more suitable for research experimental purposes. The attribute
descriptions for the Cleveland heart dataset are given in Table 1.

Table 1. Attribute descriptions for the Cleveland heart dataset from the UCI machine learning
repository [33].

Attribute Description Type of
Attribute Attribute Value Range

age Age in years Numeric 29 to 77

sex Gender Nominal 0 = female,
1 = male

cp Chest pain type Nominal

1 = typical angina,
2 = atypical angina,

3 = non-angina pain,
4 = asymptomatic

trestbps Resting blood pressure in mm Hg
on admission to the hospital Numeric 94 to 200

chol Serum cholesterol in mg/dL Numeric 126 to 564

fbs Fasting blood sugar > 120 mg/dL Nominal 0 = false,
1 = true
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Table 1. Cont.

Attribute Description Type of
Attribute Attribute Value Range

restecg Resting electrocardiographic
results Nominal

0 = normal,
1 = ST-T wave abnormality,
2 = definite left ventricular

hypertrophy by Estes’ criteria

thalach Maximum heart rate achieved Numeric 71 to 202

exang Exercise induces angina Nominal 0 = no
1 = yes

oldpeak ST depression induced by exercise
relative to rest Numeric 0 to 6.2

slope The slope of the peak exercise ST
segment Nominal

1 = upsloping,
2 = flat,

3 = downsloping

ca Number of major vessels colored
by fluoroscopy Nominal 0–3

thal The heart status Nominal
3 = normal,

6 = fixed defect,
7 = reversible defect

target Prediction attribute Nominal 0 = no risk of heart disease,
1 to 4 = risk of heart disease

The attributes with less than 10 classes are considered nominal or categorical types.
The attribute ‘sex’ consists of two classes based on gender: 1 = male and 0 = female. The at-
tribute ‘cp’ contains four classes of chest pain types: 1 = typical angina, 2 = atypical angina,
3 = non-angina pain, and 4 = asymptomatic. The attribute ‘fbs’ includes two classes
regarding whether the fasting blood sugar >120 mg/dL: 1 = true and 0 = false. The at-
tribute ‘restecg’ comprises three classes of resting electrocardiographic results: 0 = normal,
1 = abnormality in the ST-T wave, 2 = definite hypertrophy in the left ventricular. The at-
tribute ‘exang’ consists of two classes based on exercise-induced angina: 1 = yes and 0 = no.
The attribute ‘slope’ includes three classes of peak exercise ST segment slope: 1 = upslope,
2 = flat, and 3 = downslope. The attribute ‘ca’ comprises four classes based on the number
of major vessels (0–3) that are colored using fluoroscopy. The attribute ‘thal’ contains three
classes of heart status: 3 = normal, 6 = fixed, and 7 = reversible. The attribute ‘target’
consists of five classes of prediction: 0 = no risk of heart disease, and 1 to 4 = the risk
of heart disease in various stages. Since the main purpose of this research work was to
predict whether a patient was at risk of developing heart disease, the values in the range
1 to 4 were converted to 1. Therefore, the ‘target’ attribute consisted of only two classes:
0 and 1. The attributes ‘age,’ ‘trestbps,’ ’chol,’ ‘thalach,’ and ‘oldpeak’ are considered as
numeric/integer type attributes.

The statistical characteristics of the numeric attributes, such as the minimum, max-
imum, mean, standard deviation, missing, distinct, and unique values, are provided in
Table 2(a) There are no missing values found in the numeric attributes of the Cleveland
dataset.
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Table 2. (a) The statistical outline of the numeric attributes. (b) The statistical outline of the nominal
attributes.

(a)

Attribute Min. Max. Mean StdDev Missing Distinct Unique

age 29 77 54.439 9.039 0 41 4 (1%)

trestbps 94 200 131.69 17.6 0 50 17 (6%)

chol 126 564 246.693 51.777 0 152 61 (20%)

thalach 71 202 149.607 22.875 0 91 28 (9%)

oldpeak 0 6.2 1.04 1.161 0 40 10 (3%)

(b)

Attribute Label Count Proportion Missing Distinct

sex 0 97 32%
0 21 206 68%

cp

1 23 7.6%

0 4
2 50 16.5%
3 86 28.4%
4 144 47.5%

fbs
0 258 85.15%

0 21 45 14.85%

restecg
0 151 49.83%

0 31 4 1.32%
2 148 48.84%

exang 0 204 67.33%
0 21 99 32.67%

slope
1 142 46.86%

0 32 140 46.20%
3 21 6.93%

ca

0 176 58.08%

4 (1.32%) 4
1 65 21.45%
2 38 12.54%
3 20 6.6%

thal
3 166 54.79%

2 (0.66%) 36 18 5.95%
7 117 38.6%

target 0 164 54%
0 21 139 46%

Min.—minimum, Max.—maximum, StdDev—standard deviation.

The statistical characteristics of the nominal attributes, such as label, count, missing,
and distinct values, are provided in Table 2(b). There are six (6) instances in total out of 303
that were found to have missing values, which accounted for 2% of the whole dataset: four
(4) from the ‘ca’ attribute, and two (2) from the ‘thal’ attribute. The target class labels 0 (no
risk of heart disease) consisted of 164 instances and label 1 (risk of heart disease) consisted
of 139 instances, which accounted for 54% and 46% of the dataset, respectively.

3.3. Pre-Processing of Dataset

Having missing data means that the dataset is incomplete. In statistics, missing values
or missing data occur when no data value is stored for the variable in an observation. These
missing values are represented by blank/dashes. The main reason for having missing
values is that respondents forget/refuse/fail to answer certain questions. Other reasons
include sensor failure, loss of data while transferring, internet connection disruption, and
wrong mathematical calculations, such as dividing by zero. It is always hard to predict
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when missing values are present in the dataset because sometimes, they affect results
and sometimes not. In a dataset, each variable may only have a small number of missing
responses, but in combination, the missing data could be numerous. The analysis might
run but the results may not be statistically significant because of the missing data. For
research purposes, replacing missing values either by a user constant or the mean value
will be more effective than removing those observations from the dataset. There are some
missing values in the Cleveland heart dataset, namely, from the nominal attributes ‘ca’ and
‘thal’, which were replaced with the user constant based on the majority mark. The attribute
‘ca’ has four missing values and has the value 0 as the majority mark in 176 observations
out of 299. Meanwhile, the attribute ‘thal’ has two missing values and has the value 3 as
the majority mark in 166 observations out of 301. Therefore, to make sure the dataset is
complete, the missing values in ‘ca’ and ‘thal’ were replaced by the corresponding majority
marks 0 and 3, respectively. A visualization of all 14 attributes of the Cleveland heart
dataset is presented in Figure 2.
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3.4. Machine Learning Models for Classification

Researchers have applied multiple supervised machine learning algorithms on a
single dataset to identify the best classifier for disease prediction. This section discusses
the various classifiers that were used in this work to predict heart disease risk.

Naïve Bayes (NB) is based on the Bayes theorem, which assumes that the training
observations are samples from a set of statistical distributions. Each response class has its
distribution. Each distribution in the model provides a probability that a new data point
would be found at its location. For the normal distribution, the parameters are the mean
and standard deviation [34].
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Logistic regression (LR) is an equation where each predictor is multiplied by a coeffi-
cient and summed together. This sum becomes the argument for the logistic function to
predict the class [35]. For a single observation x with n features the response y is given by

y =
1

1 + e−(β0+β1x1+···+βnxn)
(1)

Sequential minimal optimization (SMO) is an algorithm that is used to solve very
large quadratic programming (QP) optimization problems quickly without any extra
storage requirement while training a support vector machine (SVM) [23]. SMO selects
two Lagrange multipliers and analytically finds the optimal values for these multipliers to
solve the SVM QP problem [36].

The instance-based classifier IBk, also known as k-nearest neighbors, determines the
class of observation by comparing it to nearby observations from the training data set. The
distance measure that is used to determine the neighbors can be selected from a range of
options. The model uses majority voting from the K nearest data points and assigns a class
to the unknown observation [37].

Bagging, also known as the bootstrap aggregation technique, is a simple and powerful
ensemble technique that is used to decrease the variance of the decision tree classifier [37].
It provides the learning algorithm with a training set consisting of a random sample of m
training examples that are selected from the initial training set of m items on each run.

Boosting is an example of an ensemble technique that creates a robust classifier
from several weak classifiers. Adaptive boosting (AdaBoostM1) is a successful boosting
algorithm that was developed for binary classification and is used to boost the performance
of any machine learning algorithm. The decision tree with one level or one decision
for classification, called the decision stump, is the most suitable algorithm to work with
AdaBoost [38].

JRip is a rule-based classifier that utilizes repeated incremental pruning to produce
error reduction (RIPPER). It is a bottom-up approach for learning rules that treats specific
judgments of examples in the training data as a class and finds a set of rules that covers all
members of the class [39].

Random forest constructs a forest of random trees by creating a set of decision trees
from a random sample of the training set to minimize the variance at the expense of a
small increase in bias (controlling over-fitting) and results in a final prediction model that
should be more accurate and reliable. While growing the trees, the random forest adds
more randomness to the algorithms by using random thresholds for each attribute [40].

3.5. Attribute Evaluators

Three attribute evaluators correlation-based feature selection with the BestFirst search
method, chi-squared attribute evaluation with Ranker, and ReliefF attribute evaluation
with Ranker are used in this work.

The correlation-based feature selection technique considers the individual predic-
tive capacity of each attribute, as well as the degree of redundancy between them when
determining the value of a subset of attributes. The subsets of attributes with a low inter-
correlation but high correlation with the class are preferred [29]. Table 3 shows the attribute
set that was obtained from the correlation-based feature selection method.
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Table 3. Attribute sets that were obtained from the correlation-based feature selection.

Attribute No. Attribute Name

3 cp
7 restecg
8 thalach
9 exang

10 oldpeak
12 ca
13 thal

The chi-squared attribute evaluation technique is an attribute ranking filter that
computes the value of the chi-squared statistic with respect to the class to determine
the rank of an attribute using the Ranker search method [40,41]. The rank values of the
Cleveland attributes using chi-squared techniques are shown in Table 4. We created an
attribute space with the 10 best predictor attributes by removing the three least ranked
ones, namely, fbs, trestbps, and chol, from the dataset and trained the machine learning
algorithms.

Table 4. Attribute sets that were obtained from the chi-squared attribute evaluation.

Attribute No. Attribute Name Rank

13 thal 82.6845
3 cp 81.8158
12 ca 72.6169
10 oldpeak 61.5234
9 exang 56.5193
8 thalach 51.5870
11 slope 45.7846
1 age 24.8856
2 sex 23.2181
7 restecg 10.0515
6 fbs 0.1934
4 trestbps 0
5 chol 0

The ReliefF attribute evaluation technique is also an attribute ranking filter that
evaluates the value of an attribute by sampling an instance many times and comparing the
value of the supplied attribute for the closest instances of the same and different classes [37].
It can work with data from both discrete and continuous classes. This method utilizes all the
instances while sampling, the number of nearest neighbors k = 10, and the Ranker search
method to provide the rank values [42] of the Cleveland attributes, which are recorded
in Table 5. The classifiers were trained with the top nine attributes by discarding the four
lowest-ranked attributes, namely, age, trestbps, fbs, and chol, from the dataset.
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Table 5. Attribute sets that were obtained from the ReliefF attribute evaluation.

Attribute No. Attribute Name Rank

12 ca 0.18812
3 cp 0.17789
13 thal 0.11452
2 sex 0.09307
11 slope 0.06898
9 exang 0.06667
7 restecg 0.05842
10 oldpeak 0.02350
8 thalach 0.02118
1 age 0.01786
4 trestbps 0.01577
6 fbs 0.01386
5 chol 0.00181

3.6. Performance Metrics

The performance metrics used in this research work, namely, accuracy, mean absolute
error (MAE), sensitivity (recall), fallout, precision, F-measure, specificity, and ROC area,
are discussed here. The confusion matrix shown in Table 6 depicts various performance
metrics for evaluating a classifier. True positives are the responses equal to the positive
class that are correctly predicted as positive. True negatives are the responses equal to the
negative class that are correctly predicted as negative. False positives are the responses
equal to the negative class but are predicted as positive. False negatives are the responses
equal to the positive class but are predicted as negative.

Table 6. Confusion matrix.

Predicted Class
High Risk (1) Low Risk (0)

Actual class
High risk (1) True Positive (TP) False Negative (FN)
Low risk (0) False Positive (FP) True Negative (TN)

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (2)

MAE =
∑ |Predicted value−Actual value|

Number of predictions
(3)

Sensitivity =
TP

TP + FN
× 100% (4)

Specificity =
TN

TN + FP
× 100% (5)

Fallout =
FP

TN + FP
× 100% (6)

Precision =
TP

TP + FP
× 100% (7)

F−Measure =
2× Precision× Recall

Precision + Recall
(8)

ROC Area: The area under the ROC curve measures the quality of a model’s predic-
tions regardless of what classification threshold is chosen. The ROC curve represents the
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true positive rate (sensitivity or recall) vs. the false positive rate (fallout) at every 0→ 1
threshold.

4. Results

The results of the machine learning classifiers using the full set of attributes and
optimal set that was obtained from attribute evaluators, tuning the parameter ‘k’ in the IBk
method, and comparison with related works are discussed in the following.

As shown in Table 7, the highest accuracy of 85.148% was attained with the sequential
minimal optimization (SMO) algorithm, followed by logistic regression (LR) with an
accuracy of 84.818% using the full set of attributes from the Cleveland dataset using the
10-fold cross-validation test option. The SMO algorithm also provided the best MAE
of 0.148, sensitivity of 0.851, fallout of 0.157, precision of 0.852, F-measure of 0.851, and
specificity of 0.90 compared to other machine learning algorithms. The meta classifier
bagging with LR achieved a high ROC area value of 0.91, followed by the single classifier
LR with a ROC area of 0.909. The LR and AdaBoostM1 with LR classifiers also reached
a specificity of 0.90. NB provided the second-best MAE of 0.184. The visualization of the
threshold curve for the target class provided an ROC area of 0.91 using the bagging with
LR meta classifier using the full set of attributes, as shown in Figure 3. The bar plot of the
performance metrics using the full set of attributes of the Cleveland heart dataset is shown
in Figure 4.

Table 7. Performance of machine learning classifiers based on the full set of attributes using 10-fold cross-validation.

Classifier Accuracy MAE Sensitivity Fallout Precision F-Measure ROC Area Specificity

NB 83.828 0.184 0.838 0.167 0.838 0.838 0.907 0.870

LR 84.818 0.210 0.848 0.162 0.85 0.847 0.909 0.900

SMO 85.148 0.148 0.851 0.157 0.852 0.851 0.847 0.900

IBk/KNN 76.897 0.233 0.769 0.235 0.769 0.769 0.764 0.790

AdaBoostM1 + DS 82.838 0.227 0.828 0.178 0.829 0.828 0.888 0.870

AdaBoostM1 + LR 84.818 0.204 0.848 0.162 0.850 0.848 0.860 0.900

Bagging + REPTree 80.858 0.290 0.809 0.198 0.809 0.809 0.878 0.850

Bagging + LR 84.488 0.214 0.845 0.162 0.845 0.845 0.910 0.880

JRip 74.917 0.325 0.749 0.256 0.749 0.749 0.755 0.780

RF 81.848 0.276 0.818 0.188 0.818 0.818 0.897 0.850
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Table 8 shows that the highest accuracy of 84.158% was achieved with the naïve Bayes
(NB) algorithm, followed by the SMO, AdaBoostM1 with decision stump (DS), and bagging
+ LR algorithms, with an accuracy of 83.828% when using the optimal attribute set that
was obtained from the correlation-based feature selection method. The SMO algorithm
provided the best MAE of 0.161, the NB classifier produced a high sensitivity of 0.842,
precision of 0.843, F-measure of 0.841, ROC area of 0.905, and specificity of 0.90 compared
to other algorithms. The meta classifier bagging with LR achieved the best fallout value of
0.167. The performance metrics of the ML classifiers with the optimal set obtained using
correlation-based feature selection are graphically presented in Figure 5. The ROC curve of
the naïve Bayes classifier using the correlation-based feature selection set provided with an
area of 0.905 is shown in Figure 6.

Table 8. Performance of the machine learning classifiers using the optimal attribute set found based on the correlation-based
feature selection technique.

Classifier Accuracy MAE Sensitivity Fallout Precision F-Measure ROC Area Specificity

NB 84.158 0.190 0.842 0.168 0.843 0.841 0.905 0.900

LR 83.168 0.227 0.832 0.176 0.832 0.831 0.902 0.870

SMO 83.828 0.161 0.838 0.169 0.839 0.838 0.835 0.880

IBk/KNN 78.877 0.218 0.789 0.219 0.789 0.788 0.781 0.830

AdaBoostM1 + DS 83.828 0.228 0.838 0.169 0.839 0.838 0.900 0.880

AdaBoostM1 + LR 83.168 0.236 0.832 0.176 0.832 0.831 0.817 0.870

Bagging + REPTree 81.188 0.276 0.812 0.197 0.812 0.811 0.886 0.860

Bagging + LR 83.828 0.229 0.838 0.167 0.838 0.838 0.902 0.870

JRip 74.257 0.332 0.743 0.269 0.743 0.741 0.750 0.800

RF 79.538 0.255 0.795 0.210 0.795 0.795 0.882 0.820
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As shown in Table 9, the maximum accuracy of 86.468% was attained with the sequen-
tial minimal optimization (SMO) algorithm, followed by bagging with an LR classifier, with
a maximum accuracy of 85.478% using the optimal attribute set obtained from chi-squared
attribute evaluation technique. The SMO algorithm also offered the best MAE of 0.135,
sensitivity of 0.865, fallout of 0.142, precision of 0.865, F-measure of 0.864, and specificity
of 0.90 relative to other classifiers. Both the naïve Bayes and logistic regression classifiers
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achieved a high ROC area value of 0.909. The graphical representation of performance
metrics using the chi-squared attribute evaluation method is shown in Figure 7. The ROC
curve with an area of 0.909, which was found using the naïve Bayes and logistic regression
models using the chi-squared attribute evaluation set, are shown in Figure 8a,b respectively.

Table 9. Performance of the machine learning classifiers based on the optimum attribute set found using the chi-squared
attribute evaluation technique.

Classifier Accuracy MAE Sensitivity Fallout Precision F-Measure ROC Area Specificity

NB 83.498 0.183 0.835 0.171 0.835 0.835 0.909 0.870

LR 84.488 0.212 0.845 0.159 0.845 0.845 0.909 0.870

SMO 86.468 0.135 0.865 0.142 0.865 0.864 0.861 0.900

IBk/KNN 77.887 0.223 0.779 0.226 0.779 0.779 0.775 0.800

AdaBoostM1 + DS 83.498 0.224 0.835 0.173 0.836 0.834 0.899 0.880

AdaBoostM1 + LR 84.488 0.214 0.845 0.159 0.845 0.845 0.854 0.870

Bagging + REPTree 82.178 0.282 0.822 0.188 0.823 0.821 0.883 0.880

Bagging + LR 85.478 0.217 0.855 0.152 0.855 0.854 0.908 0.890

JRip 76.897 0.319 0.769 0.235 0.769 0.769 0.765 0.790

RF 83.168 0.257 0.815 0.193 0.816 0.814 0.904 0.880Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 22 
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Figure 7. Performance metrics based on the optimal set obtained using the chi-squared attribute evaluation technique.
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As shown in Table 10, the highest accuracy of 86.138% was achieved with the sequen-
tial minimal optimization (SMO) algorithm, followed by the bagging with LR algorithm,
with the highest accuracy of 85.148% based on the optimum attribute set, which was
obtained using the ReliefF attribute evaluation method. Furthermore, the SMO algorithm

Figure 8. ROC curves of the optimal set obtained using chi-squared attribute evaluation: (a) naïve Bayes classifier and
(b) logistic regression classifier.

As shown in Table 10, the highest accuracy of 86.138% was achieved with the sequen-
tial minimal optimization (SMO) algorithm, followed by the bagging with LR algorithm,
with the highest accuracy of 85.148% based on the optimum attribute set, which was
obtained using the ReliefF attribute evaluation method. Furthermore, the SMO algorithm
produced the best MAE of 0.138, sensitivity of 0.861, fallout of 0.145, precision of 0.862,
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F-measure of 0.861, and specificity of 0.90 compared with the other machine learning
classifiers. The meta classifier bagging + LR achieved a high ROC area value of 0.91. The
visualization of the threshold curve for the target class produced an ROC area of 0.91 using
bagging with LR meta classifier, which is shown in Figure 9. Figure 10 shows a graphical
representation of performance metrics using the ReliefF attribute evaluation approach.

Table 10. Performance of machine learning classifiers based on the optimal attribute set using the ReliefF attribute evaluation
technique.

Classifier Accuracy MAE Sensitivity Fallout Precision F-Measure ROC Area Specificity

NB 84.488 0.180 0.845 0.160 0.845 0.845 0.909 0.870

LR 84.488 0.212 0.845 0.159 0.845 0.845 0.909 0.870

SMO 86.138 0.138 0.861 0.145 0.862 0.861 0.858 0.900

IBk/KNN 78.547 0.218 0.785 0.220 0.785 0.785 0.777 0.820

AdaBoostM1 + DS 83.828 0.225 0.838 0.169 0.839 0.838 0.901 0.880

AdaBoostM1 + LR 84.488 0.211 0.845 0.159 0.845 0.845 0.867 0.870

Bagging + REPTree 83.828 0.278 0.838 0.170 0.839 0.838 0.890 0.880

Bagging + LR 85.148 0.216 0.851 0.154 0.852 0.851 0.910 0.880

JRip 74.587 0.333 0.746 0.261 0.745 0.745 0.753 0.790

RF 81.188 0.252 0.812 0.195 0.812 0.811 0.895 0.850Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 22 
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A comparison of the accuracy values using the full set of attributes of the Cleveland
dataset and optimal attribute sets obtained using various attribute selection techniques
performed in this work is shown in Table 11. The correlation-based feature selection
method was not able to provide an accuracy value greater than that of the full attribute
space. However, there was an improvement in accuracy of about 2% and 1% from the IBk
and AdaBoostM1 + DS classifiers, respectively. Besides providing the highest accuracy
of 86.468% from SMO, the chi-squared attribute evaluation technique improved most of
the classifiers’ performances, except for the NB, LR, and AdaBoostM1 + LR classifiers. An
increase in the accuracy of about 2% was attained using the JRip algorithm and 1% using
the IBk and Bagging + LR algorithms. The ReliefF attribute evaluation method offered
the highest improvement in accuracy of about 3% when using the bagging + REPTree
classifier, followed by 1.65% from the IBk classifier and about 1% from the SMO and
AdaBoostM1 + DS classifiers.

Table 11. Accuracy comparison of the attribute selection techniques.

Classifier Full
Attributes CfsSubset Diff. Chi-Squared Diff. ReliefF Dif.

NB 83.828 84.158 0.330 83.498 −0.330 84.488 0.660

LR 84.818 83.168 −1.650 84.488 −0.330 84.488 −0.330

SMO 85.148 83.828 −1.320 86.468 1.320 86.138 0.990

IBk/KNN 76.897 78.877 1.980 77.887 0.990 78.547 1.650

AdaBoostM1 + DS 82.838 83.828 0.990 83.498 0.660 83.828 0.990

AdaBoostM1 + LR 84.818 83.168 −1.650 84.488 −0.330 84.488 −0.330

Bagging + REPTree 80.858 81.188 0.330 82.178 1.320 83.828 2.970

Bagging + LR 84.488 83.828 −0.660 85.478 0.990 85.148 0.660

JRip 74.917 74.257 −0.660 76.897 1.980 74.587 −0.330

RF 81.848 79.538 −2.310 83.168 1.320 81.188 −0.660

Diff.—difference.
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Besides the training of the ML classifier on the full and optimal attribute sets obtained
from the attribute evaluators, the hyperparameter ‘number of nearest neighbors k’ tuning
was performed for various values of k = 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 in the IBk
classifier. The best accuracy, accuracy improvement, and other performance metrics for
specific ‘k’ values that were attained from the parameter tuning are presented in Table 12.
Though the accuracy delivered by the IBk classifier was slightly less than that of the SMO
classifier that was obtained from the chi-squared attribute set, i.e., 86.468%, there was a
significant improvement in accuracy by tuning the hyperparameter ‘k’ value in all the
cases. We observed that the greatest accuracy improvement of about 8.25% came from the
chi-squared attribute evaluation with k = 9 compared to that of default parameter k = 1.
The performance comparison of this research work with the related works is presented in
Table 13.

Table 12. Performance comparison of the KNN algorithm by tuning the parameter ‘k.’

Attribute set Acc. (k = 1) Acc
(‘k’)

Acc.
Impr. (%) MAE Sen. Fallout Pre. F-Mea. ROC

Area Spe.

Full
attributes 76.897 - - 0.184 0.769 0.235 0.769 0.769 0.764 0.790

Full
attributes 76.897 84.158

(k = 5) 7.260 0.228 0.842 0.166 0.842 0.841 0.893 0.880

CfsSubset 78.877 83.498
(k = 11) 4.620 0.237 0.835 0.178 0.839 0.833 0.889 0.910

Chi-Squared 77.887 86.138
(k = 9) 8.250 0.224 0.861 0.146 0.862 0.861 0.905 0.900

ReliefF 76.897 84.488
(k = 9) 7.590 0.224 0.845 0.165 0.847 0.844 0.904 0.900

Acc.—accuracy, Impr.—improvement, Sen.—sensitivity, Pre.—precision, F-Mea.—F-measure, Spe.—specificity.

Table 13. Performance comparison of related works.

Research Author Method # Attr. Acc. (%) Pre. Sen. AUC

R. Perumal et al. [18] LR with PCA 7 87.0 - 0.85 -

C.B.C Latha et al. [19] Majority vote with NB, BN, RF,
and MP 9 85.48 - - -

D. Ananey-Obiri et al. [20] LR and GNB with Single value
decomposition 4 82.75 - - 0.87

N. K. Kumar et al. [21] Random Forest 10 85.71 - - 0.8675

A. Gupta et al. [22] FAMD + RF 28 93.44 - 0.8928 -

M. Sultana et al. [23] SMO 14 84.0741 - - 0.8392

S. Kodati et al. [25] SMO 14 - 0.84 0.8365 -

I. Tougui et al. [27] ANN 14 85.86 - 0.8394 -

V. Pavithra et al. [28] HRFLC (RF + AdaBoost + Pearson
Coefficient) 11 79.0 0.78 0.79 -

C. Gazeloglu et al. [29] Correlation-based feature selection
with NB 6 84.818 - - 0.905

C. Gazeloglu et al. [29]
Fuzzy Rough Set and Chi-square

FS with Radial bias function (RBF)
Network

7 81.188 - - 0.261

B. A. Tama et al. [32] Two-tier ensemble PSO 7 85.6 - - 0.8586

S. M. Saqlain et al. [43] Forward feature selection with
Radial Basis Function SVM 7 81.19 - 72.92 -

Proposed method Chi-Squared + SMO 11 86.468 0.865 0.865 0.861

Attr.—attributes, Acc.—accuracy, Pre.—precision, Sen.—sensitivity, AUC—area under the ROC curve.
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This research work utilized the Cleveland heart dataset to achieve the highest accu-
racy of 85.148% with the SMO model based on the full set of attributes and an accuracy
of 84.158% with the NB model based on an optimal set of seven attributes obtained from
correlation-based feature selection. The SMO classifier further achieved the best predic-
tion accuracies of 86.468% and 86.138% from the optimal sets obtained from chi-squared
(11 attributes) and ReliefF (10 attributes) techniques, respectively. The best values of other
performance metrics, namely, MAE (0.135), sensitivity (0.865), specificity (0.90), fallout
(0.142), precision (0.865), and F-measure (0.864), was obtained from SMO with the chi-
squared method. The bagging + LR classifier provided an ROC area of 0.91 on both the full
attributes and optimal sets obtained from the ReliefF method. Nevertheless, the ensemble
classifiers AdaBoost and bagging fell short in their predictions compared to the SMO,
while the bagging + REPTree classifier achieved the highest improvement in accuracy of
about 3% with the ReliefF method. Tuning of the hyperparameter ‘k’ in IBk reached an
improvement in accuracy of 8.25% with the chi-squared evaluator for k = 9. Overall, the
SMO classifier showed better performance on the full attributes and optimal sets obtained
from the chi-squared and ReliefF attribute evaluators, whereas the NB classifier showed a
better performance with the correlation-based feature selection technique.

5. Conclusions

In this study, three attribute evaluator techniques were utilized to select significant
attributes from the Cleveland heart dataset to improve the performance of machine learning
classifiers when predicting heart disease risk. A remarkable performance was achieved
by the SMO classifier using the chi-squared attribute evaluation method. Eventually, we
noticed that there was a significant improvement in the prediction performance with
appropriate attribute selection and tuning the hyperparameters of the classifiers. Although
the performance of the classifiers looks satisfactory, a smaller dataset of 303 instances,
10 machine learning classifiers, and 3 feature selection methods were used in this research.
There is a huge scope to explore various machine learning algorithms and feature selection
techniques. In the future, we intend to combine multiple datasets to obtain a higher
number of observations and conduct more experiments by selecting appropriate attributes
to improve the classifier’s predictive performance.

Author Contributions: Conceptualization, K.V.V.R. and I.E.; methodology, K.V.V.R., I.E., A.A.A.
and H.N.C.; software, I.E., A.A.A., S.P. (Sivajothi Paramasivam), H.N.C. and S.P. (S. Pranavanand);
validation, K.V.V.R., I.E., A.A.A., S.P. (Sivajothi Paramasivam), H.N.C. and S.P. (S. Pranavanand);
formal analysis, K.V.V.R. and I.E.; investigation, K.V.V.R.; resources, I.E., A.A.A., S.P. (Sivajothi
Paramasivam), H.N.C. and S.P. (S. Pranavanand); data curation, K.V.V.R.; writing–original draft
preparation, K.V.V.R.; writing–review and editing, I.E., A.A.A., S.P. (Sivajothi Paramasivam), H.N.C.
and S.P. (S. Pranavanand); visualization, I.E., A.A.A., S.P. (Sivajothi Paramasivam), H.N.C. and
S.P. (S. Pranavanand); supervision, I.E., A.A.A., S.P. (Sivajothi Paramasivam), H.N.C. and S.P. (S.
Pranavanand); project administration, I.E., A.A.A. and H.N.C.; funding acquisition, I.E. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Universiti Teknologi PETRONAS, grant number 0153AB-M66
and the APC was funded by 0153AB-M66.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: [https://archive.ics.uci.edu/ml/datasets/heart+disease] accessed on 15 August 2021.

Conflicts of Interest: The authors declare no conflict of interest.

https://archive.ics.uci.edu/ml/datasets/heart+disease


Appl. Sci. 2021, 11, 8352 21 of 22

References
1. WHO. Available online: https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1 (accessed on 9 February 2021).
2. Healthline. Available online: https://www.healthline.com/health/stroke-vs-heart-attack#treatment (accessed on 20 February

2021).
3. Chicco, D.; Jurman, G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection

fraction alone. BMC Med. Inform. Decis. Mak. 2020, 20, 1–16. [CrossRef] [PubMed]
4. Karthick, D.; Priyadharshini, B. Predicting the chances of occurrence of Cardio Vascular Disease (CVD) in people using classifica-

tion techniques within fifty years of age. In Proceedings of the 2nd International Conference on Inventive Systems and Control,
ICISC 2018, Coimbatore, India, 19–20 January 2018; pp. 1182–1186. [CrossRef]

5. Obasi, T.; Shafiq, M.O. Towards comparing and using Machine Learning techniques for detecting and predicting Heart Attack
and Diseases. In Proceedings of the 2019 IEEE International Conference on Big Data, Big Data 2019, Los Angeles, CA, USA, 9–12
December 2019; pp. 2393–2402. [CrossRef]

6. Sharma, H.; Rizvi, M.A. Prediction of Heart Disease using Machine Learning Algorithms: A Survey. Int. J. Recent Innov. Trends
Comput. Commun. 2017, 5, 99–104.

7. Ramalingam, V.V.; Dandapath, A.; Raja, M.K. Heart disease prediction using machine learning techniques: A survey. Int. J. Eng.
Technol. 2018, 7, 684–687. [CrossRef]

8. Alaa, A.M.; Bolton, T.; Di Angelantonio, E.; Rudd, J.H.F.; Van Der Schaar, M. Cardiovascular disease risk prediction using
automated machine learning: A prospective study of 423,604 UK Biobank participants. PLoS ONE 2019, 14, e0213653. [CrossRef]

9. Uddin, S.; Khan, A.; Hossain, E.; Moni, M.A. Comparing different supervised machine learning algorithms for disease prediction.
BMC Med. Inform. Decis. Mak. 2019, 19, 1–16. [CrossRef]

10. Song, Q.; Zheng, Y.-J.; Yang, J. Effects of Food Contamination on Gastrointestinal Morbidity: Comparison of Different Machine-
Learning Methods. Int. J. Environ. Res. Public Heal. 2019, 16, 838. [CrossRef]

11. Chen, M.; Hao, Y.; Hwang, K.; Wang, L.; Wang, L. Disease Prediction by Machine Learning Over Big Data from Healthcare
Communities. IEEE Access 2017, 5, 8869–8879. [CrossRef]

12. Aljanabi, M.; Qutqut, M.; Hijjawi, M. Machine Learning Classification Techniques for Heart Disease Prediction: A Review. Int. J.
Eng. Technol. 2018, 7, 5373–5379. [CrossRef]

13. Pasha, S.J.; Mohamed, E.S. Novel Feature Reduction (NFR) Model with Machine Learning and Data Mining Algorithms for
Effective Disease Risk Prediction. IEEE Access 2020, 8, 184087–184108. [CrossRef]

14. Swain, D.; Pani, S.K.; Swain, D. A Metaphoric Investigation on Prediction of Heart Disease using Machine Learning. In
Proceedings of the 2018 International Conference on Advanced Computation and Telecommunication, ICACAT, Bhopal, India,
28–29 December 2018; pp. 1–6. [CrossRef]

15. Weng, S.F.; Reps, J.M.; Kai, J.; Garibaldi, J.M.; Qureshi, N. Can machine-learning improve cardiovascular risk prediction using
routine clinical data? PLoS ONE 2017, 12, e0174944. [CrossRef]

16. Khan, Y.; Qamar, U.; Yousaf, N.; Khan, A. Machine Learning Techniques for Heart Disease Datasets: A Survey. In Proceedings of
the 2019 11th International Conference on Machine Learning and Computing, Zhuhai, China, 22–24 February 2019; pp. 27–35.
[CrossRef]

17. Goel, S.; Deep, A.; Srivastava, S.; Tripathi, A. Comparative Analysis of various Techniques for Heart Disease Prediction. In
Proceedings of the 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, Mathura,
India, 21–22 November 2019; pp. 88–94. [CrossRef]

18. Perumal, R. Early Prediction of Coronary Heart Disease from Cleveland Dataset using Machine Learning Techniques. Int. J. Adv.
Sci. Technol. 2020, 29, 4225–4234.

19. Latha, C.B.C.; Jeeva, S.C. Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques.
Inform. Med. Unlocked 2019, 16, 100203. [CrossRef]

20. Ananey-Obiri, D.; Sarku, E. Predicting the Presence of Heart Diseases using Comparative Data Mining and Machine Learning
Algorithms. Int. J. Comput. Appl. 2020, 176, 17–21. [CrossRef]

21. Kumar, N.K.; Sindhu, G.; Prashanthi, D.; Sulthana, A. Analysis and Prediction of Cardio Vascular Disease using Machine Learning
Classifiers. In Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems
(ICACCS), Coimbatore, India, 6–7 March 2020; pp. 15–21. [CrossRef]

22. Gupta, A.; Kumar, R.; Arora, H.S.; Raman, B. MIFH: A Machine Intelligence Framework for Heart Disease Diagnosis. IEEE Access
2019, 8, 14659–14674. [CrossRef]

23. Sultana, M.; Haider, A.; Uddin, M.S. Analysis of data mining techniques for heart disease prediction. In Proceedings of the 2016
3rd International Conference on Electrical Engineering and Information and Communication Technology, iCEEiCT 2016, Dhaka,
Bangladesh, 22–24 September 2016; pp. 1–5. [CrossRef]

24. Mohan, S.; Thirumalai, C.; Srivastava, G. Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques. IEEE
Access 2019, 7, 81542–81554. [CrossRef]

25. Kodati, S.; Vivekanandam, R. Analysis of Heart Disease using in Data Mining Tools Orange and Weka Sri Satya Sai University
Analysis of Heart Disease using in Data Mining Tools Orange and Weka. Glob. J. Comput. Sci. Technol. 2018, 18.

https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1
https://www.healthline.com/health/stroke-vs-heart-attack#treatment
http://doi.org/10.1186/s12911-020-1023-5
http://www.ncbi.nlm.nih.gov/pubmed/32013925
http://doi.org/10.1109/icisc.2018.8398990
http://doi.org/10.1109/bigdata47090.2019.9005488
http://doi.org/10.14419/ijet.v7i2.8.10557
http://doi.org/10.1371/journal.pone.0213653
http://doi.org/10.1186/s12911-019-1004-8
http://doi.org/10.3390/ijerph16050838
http://doi.org/10.1109/ACCESS.2017.2694446
http://doi.org/10.14419/ijet.v7i4.28646
http://doi.org/10.1109/ACCESS.2020.3028714
http://doi.org/10.1109/icacat.2018.8933603
http://doi.org/10.1371/journal.pone.0174944
http://doi.org/10.1145/3318299.3318343
http://doi.org/10.1109/iscon47742.2019.9036290
http://doi.org/10.1016/j.imu.2019.100203
http://doi.org/10.5120/ijca2020920034
http://doi.org/10.1109/icaccs48705.2020.9074183
http://doi.org/10.1109/ACCESS.2019.2962755
http://doi.org/10.1109/ceeict.2016.7873142
http://doi.org/10.1109/ACCESS.2019.2923707


Appl. Sci. 2021, 11, 8352 22 of 22

26. Ed-Daoudy, A.; Maalmi, K. Performance evaluation of machine learning based big data processing framework for prediction of
heart disease. In Proceedings of the International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS),
Taza, Morocco, 26–27 December 2019; pp. 1–5. [CrossRef]

27. Tougui, I.; Jilbab, A.; El Mhamdi, J. Heart disease classification using data mining tools and machine learning techniques. Health
Technol. 2020, 10, 1137–1144. [CrossRef]

28. Pavithra, V.; Jayalakshmi, V. Hybrid feature selection technique for prediction of cardiovascular diseases. Mater. Today Proc. 2021,
22, 660–670. [CrossRef]
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